数学符号
| Symbol | Meaning |
|---|---|
| 矩阵 | |
| 学习率或步长 | |
| 计算域 的边界 | |
| 要近似的通用函数,通常是未知的。 | |
| 的近似版本 | |
| 计算区域 | |
| 连续/理想物理模型 | |
| 离散物理模型 | |
| 神经网络参数 | |
| 时间维度 | |
| 矢量速度 | |
| 神经网络输入或空间坐标 | |
| 神经网络输出 | |
| 学习目标:基本事实、参考或观察数据 |
重要缩写的摘要
| ABbreviation | Meaning |
|---|---|
| BNN | 贝叶斯神经网络 |
| CNN | 卷积神经网络 |
| DL | 深度学习 |
| GD | 梯度下降 |
| MLP | 多层感知机,一种具有全连接层的神经网络 |
| NN | 神经网络(通用网络,与 CNN 或 MLP 等网络不同) |
| PDE | 偏微分方程 |
| PBDL | 基于物理的深度学习 |
| SGD | 随机梯度下降 |
数学符号
| Symbol | Meaning |
|---|---|
| matrix | |
| learning rate or step size | |
| boundary of computational domain | |
| generic function to be approximated, typically unknown | |
| approximate version of | |
| computational domain | |
| continuous/ideal physical model | |
| discretized physical model, PDE | |
| neural network params | |
| time dimension | |
| vector-valued velocity | |
| neural network input or spatial coordinate | |
| neural network output | |
| learning targets: ground truth, reference or observation data |
重要缩写的摘要
| ABbreviation | Meaning |
|---|---|
| BNN | Bayesian neural network |
| CNN | Convolutional neural network |
| DL | Deep Learning |
| GD | (steepest) Gradient Descent |
| MLP | Multi-Layer Perceptron, a neural network with fully connected layers |
| NN | Neural network (a generic one, in contrast to, e.g., a CNN or MLP) |
| PDE | Partial Differential Equation |
| PBDL | Physics-Based Deep Learning |
| SGD | Stochastic Gradient Descent |